

Junos Segment Routing with SRv6 Micro-SIDs

COURSE OVERVIEW

This three-day course provides an in-depth introduction to segment routing (SR), otherwise known as Source Packet Routing in Networking (SPRING). The course focuses on using IS-IS and BGP to deploy SRv6 micro-SIDs, which encodes multiple instructions into a single IPv6 address in the data plane.

After exploring the features and use cases for SRv6 with micro-SIDs, students are introduced to the fundamentals of a segment-routed network. This includes locator blocks, locator prefixes, and a variety of BGP service functions such as uDT4 and uDT6 segments. This also includes VPN configuration, with a focus on Layer 3 VPNs and the MPLS label transposition process.

Students are then taught how an SRv6 micro-SID network can encode multiple segments into a single address, and the segment popping process that takes place across a path. Students configure End and End. X transport segments to test this, which acts as a starting point to deploy a variety of backup paths with Topology-Independent Loop-Free Alternate (TI-LFA). Finally, students consider multitopology designs with Flex Algo, including Classful Transport and the BGP color community. A brief self-study section then follows that considers classic SRv6.

Students also briefly learn the most fundamental concepts of SR-MPLS. This knowledge enables students to compare and contrast the two SR methods.

This course is based on Junos OS Release 25.2R1.8.

COURSE LEVEL

Junos Segment Routing with SRv6 Micro-SIDs is an advanced-level course, but will also appeal to students who have strong intermediate knowledge.

AUDIENCE

The primary audiences for this course include:

- Individuals who work with routers that run Junos OS.
- Individuals involved in the service provider industry, the data center industry, or who work in large enterprise networks.
- Operators who use BGP and IS-IS, and who may previously have used MPLS to create transport paths across their networks.

PREREQUISITES

The prerequisites for this course include:

- Mandatory: Advanced routing knowledge; the Advanced Junos Service Provider Routing course or equivalent knowledge is recommended.
- Mandatory: Intermediate Junos CLI experience.
- Mandatory: Fundamental knowledge of MPLS transport functions, including LDP and RSVP, and the BGP prefix resolution process in such environments; the Junos MPLS Fundamentals course or equivalent knowledge is recommended.
- Recommended: Basic knowledge of Layer 3 VPNs in an MPLS environment.

RELATED CERTIFICATION

JNCIP-SP Certification | Juniper Networks US

JNCIE-SP Certification | Juniper Networks US

RELATED JUNIPER PRODUCTS

ACX Series Junos OS MX Series Network Design Paragon Pathfinder PTX Series

QFX Series

Course Outline

OBJECTIVES

After successfully completing this course, the students should be able to:

- Explain the basic philosophy of segment routing.
- Describe some of the exciting features offered by segment routing.
- Explain some fundamentals segment routing concepts, such as segment IDs, global segments, and local segments.
- Demonstrate how SRv6 micro-SIDs can enable a BGP-free core.
- Demonstrate how to deploy and verify uSID locator blocks and locator prefixes in Junos OS.
- Describe the variety of function types you can deploy in an SRv6 network.
- Demonstrate how to configure internal and external BGP in preparation for generating SRv6 micro-SIDs.
- Demonstrate how to deploy uDT4, uDT6, and uDT46 micro-SIDs.
- Demonstrate how to override the default Junos OS micro-SID Local ID Block (LIB) range.
- Configure and verify Layer 3 VPNs in an SRv6 micro-SID network.
- Explain the micro-SID popping process and the Segment Routing Header (SRH).
- Explain how TI-LFA backup paths can radically reduce downtime during link or node failure.
- Demonstrate how to configure and verify TI-LFA link protection in a Junos OS SRv6 network.
- Demonstrate how to configure and verify TI-LFA node protection in a Junos OS SRv6 network.
- Explain how the BGP color community can automatically map prefixes to a specific SR policy.
- Describe how Junos transport classes offer advantages in a network with color-based traffic engineering.
- Describe the advantages and operation of Flex Algo.
- Demonstrate how to configure and verify Flex Algo for SRv6 micro-SIDs on a Junos OS device.
- Describe the process by which Junos OS calculates a uSID stack for TI-LFA backup paths.

COURSE CONTENTS

DAY 1

Module 1: Introducing Segment Routing

- Explain how a segment is like an instruction to forward or process a packet in a particular way
- Describe the high-level difference between SR-MPLS, classic SRv6, and micro-SIDs
- Demonstrate at a high level how segments are advertised inside your IGP

Module 2: The Features Enabled by Segment Routing

- Explain how segment routing enables both shortest paths and traffic engineered paths
- Describe some exciting features offered by segment routing, such as Flex Algo and TI-LFA

Module 3: Segments in the Data Plane - SR-MPLS

- Describe how SR-MPLS creates stacks of segments
- Demonstrate how SR-MPLS encodes global and local segments with an MPLS label

Module 4: Segments in the Data Plane - SRv6 Micro-SIDs

- Explain how micro-SIDs compress one SID into a single IPv6 hextet
- Describe how the SRv6 locator enables shortest-path routing to a remote node
- Describe how the SRv6 function encodes an instruction for a local router to process

Module 5: SRv6 Micro-SID Locators - Configuration and Verification

- Explain the design of the test network used throughout this course
- Describe how to choose and deploy a uSID locator block
- Configure a uSID locator prefix in Junos OS
- Verify uSID locator blocks and prefixes in Junos OS

Lab 1: Enabling Locators and Shortest-Path Tunnels in an SRv6 Micro-SID Network

Course Outline

Module 6: SRv6 Micro-SID Functions

- Explain the purpose and meaning of End.DT4, End.DT6, and End.DT46 functions in SRv6
- Demonstrate the importance of maintaining separate blocks of uSID values for global and local segments

Module 7: SRv6 Micro-SIDs - Initial EBGP and IBGP Configuration

- Configure IPv6 EBGP sessions to advertise IPv4 prefixes with IPv4 next-hops
- Configure IBGP to process SRv6 SIDs and to advertise IPv4 prefixes with IPv6 next-hops
- Demonstrate how to verify that your IBGP network is ready to host uSIDs

Lab 2: Configuring the Underlying EBGP and IBGP Settings for SRv6 Micro-SIDs

DAY 2

Module 8: uDT4 and uDT6 Micro-SIDs - Configuration and Verification

- Configure uDT4, uDT6, and uDT46 micro-SIDs in the default Junos OS routing tables
- Verify BGP micro-SID prefix resolution on the Junos OS CLI

Lab 3: Tagging BGP Prefixes with uDT4 and uDT6 Micro-SIDs for IP Prefix Resolution

Module 9: Customizing the Micro-SID Local ID Block

- Configure Junos OS to allocate a range of micro-SID values for manual allocation
- Configure Junos OS to allocate a larger range of micro-SID values to the LIB

Module 10: SRv6 Micro-SIDs and Layer 3 VPNs

- Describe the transposition process of using MPLS labels in BGP Updates to efficiently advertise SRv6 SIDs
- Demonstrate how to deploy a Layer 3 VPN that uses the SRv6 micro-SID data plane
- Describe the function types required in a variety of Layer 2 VPNs, such as EVPN and VPLS

Lab 4: SRv6 Micro-SID Block Customization and VPN Micro-SIDs

Module 11: Micro-SID Stacks, SID Popping, and the Segment Routing Header (SRH)

- Explain how transport micro-SIDs can be popped along a defined path
- Describe the format and behavior of the segment routing header
- Configure and verify End.X segments for direct next-hop transport instructions

Lab 5: Enabling SRv6 Micro-SID Transport Segments for Traffic-Engineered Paths

Module 12: Topology-Independent Loop-Free Alternate - Theory

- Explain how TI-LFA creates loop-free backup paths with full topology coverage
- Explain the concepts of the pre-convergence and post-convergence topologies
- Describe the difference between link protection and node protection in TI-LFA

DAY 3

Module 13: TI-LFA Link Protection - Configuration

- Configure Junos OS for TI-LFA with link protection
- Verify how Junos creates SRv6 TI-LFA SID stacks to route around pre-convergence loops

Module 14: TI-LFA Node Protection - Configuration

- Configure Junos OS for TI-LFA with loose node protection
- Configure Junos OS for TI-LFA with strict node protection
- Explain what types of traffic are eligible for local repair

Lab 6: Topology-Independent Loop-Free Alternate

NTF20250422

Course Outline

Module 15: Color-Based Traffic Engineering and the BGP Color Community

- Describe the format of the BGP color community
- Demonstrate how to configure an SR policy with a color
- Explain why Junos offers two different methods of enabling color-aware prefix resolution

Module 16: Flex Algo, Part 1

- Explain the advantage of using Flex Algo to create multiple topologies with their own unique SPF metric
- Explain the meaning of algos 0, 1, and 128 to 255
- Configure the elements used to build a unique Flexible Algorithm Definition

Module 17: Color-Based Traffic Engineering with Classful Transport

- Explain the advantages of resolving color-tagged prefixes using the Classful Transport method
- Configure automatic and manual transport classes
- Verify whether IP unicast prefixes have resolved using a transport class
- Verify whether VPN prefixes have resolved using a transport class

Lab 7: Enabling Classful Transport in Junos OS

Module 18: Flex Algo, Part 2

- Configure a Flex Algo topology using the Classful Transport method of resolution
- Verify and troubleshoot a Junos OS Flex Algo deployment
- Describe some important design considerations when deploying Flex Algo

Lab 8: Flex Algo for SRv6 Micro-SIDs

Self-Study Modules

Module 19: Topology-Independent Loop-Free Alternate - The Micro-SID Stack

- Explain how P space and extended P space find loop-free backup paths
- Demonstrate how Q space can be used to tunnel backup paths across topological loops
- Describe how adjacency segments can bridge gaps between P space and Q space

Module 20: Classic SRv6

- Describe the behavior of the original method of using classic SRv6 to create locators and functions
- Configure and verify a basic classic SRv6 network